Transfer Learning is a popular tool in the field of Deep Learning. It is used to reuse a previously created model for a new problem. Thanks to that you can train neural networks with little data, which significantly saves time and memory resources required. This type of algorithm is also available in the ML.NET library. I want to show you its use on the example of Image Classification using a pre-trained TensorFlow model.
Strona głównaInne
Inne 1646 dni, 4 godziny, 25 minut temu 32 pokaż kod licznika zwiń
Podobne artykuły:
- Poisson Regression using F# and ML.NET | bush_dev
- Podcast BNF odc. 9 Dlaczego programista musi rozumieć Machine Learning? - YouTube
- Designing neural networks in C# using TensorFlow.NET | bush_dev
- Main problems and challenges of machine learning – bush_dev
- .NET 5 Ewolucja czy Rewolucja? - Podcast PracaDeva #1
- Records w C# - Podstawy, przykłady i kiedy ich używać - YouTube
- Zmiany w C# 9.0 - Blog Daniela Plawgo
- Creating a recommendation engine using ML.NET Model Builder
- .NET Conf oraz .NET 5 - Blog Daniela Plawgo
- Python w Data Science | Programistka Iwona
- Skąd brać dane do projektów data science? Czyli webscraping. | Programistka Iwona